Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Radiat Plasma Med Sci ; 5(5): 712-722, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34541435

RESUMO

Several research groups are studying organ-dedicated limited angle positron emission tomography (PET) systems to optimize performance-cost ratio, sensitivity, access to the patient and/or flexibility. Often open systems are considered, typically consisting of two detector panels of various sizes. Such systems provide incomplete sampling due to limited angular coverage and/or truncation, which leads to artefacts in the reconstructed activity images. In addition, these organ-dedicated PET systems are usually stand-alone systems, and as a result, no attenuation information can be obtained from anatomical images acquired in the same imaging session. It has been shown that the use of time-of-flight information reduces incomplete data artefacts and enables the joint estimation of the activity and the attenuation factors. In this work, we explore with simple 2D simulations the performance and stability of a joint reconstruction algorithm, for imaging with a limited angle PET system. The reconstruction is based on the so-called MLACF (Maximum Likelihood Attenuation Correction Factors) algorithm and uses linear attenuation coefficients in a known-tissue-class region to obtain absolute quantification. Different panel sizes and different time-of-flight (TOF) resolutions are considered. The noise propagation is compared to that of MLEM reconstruction with exact attenuation correction (AC) for the same PET system. The results show that with good TOF resolution, images of good visual quality can be obtained. If also a good scatter correction can be implemented, quantitative PET imaging will be possible. Further research, in particular on scatter correction, is required.

2.
Sensors (Basel) ; 21(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917742

RESUMO

Positron emission tomography (PET) is a functional non-invasive imaging modality that uses radioactive substances (radiotracers) to measure changes in metabolic processes. Advances in scanner technology and data acquisition in the last decade have led to the development of more sophisticated PET devices with good spatial resolution (1-3 mm of full width at half maximum (FWHM)). However, there are involuntary motions produced by the patient inside the scanner that lead to image degradation and potentially to a misdiagnosis. The adverse effect of the motion in the reconstructed image increases as the spatial resolution of the current scanners continues improving. In order to correct this effect, motion correction techniques are becoming increasingly popular and further studied. This work presents a simulation study of an image motion correction using a frame-based algorithm. The method is able to cut the acquired data from the scanner in frames, taking into account the size of the object of study. This approach allows working with low statistical information without losing image quality. The frames are later registered using spatio-temporal registration developed in a multi-level way. To validate these results, several performance tests are applied to a set of simulated moving phantoms. The results obtained show that the method minimizes the intra-frame motion, improves the signal intensity over the background in comparison with other literature methods, produces excellent values of similarity with the ground-truth (static) image and is able to find a limit in the patient-injected dose when some prior knowledge of the lesion is present.


Assuntos
Elétrons , Processamento de Imagem Assistida por Computador , Algoritmos , Humanos , Movimento (Física) , Movimento , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...